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Curvature of the horizon 

Abstract: Followers of the flat Earth idea frequently use quantities like 

distance to the horizon and its dip. Mathematical expressions for these 

can be easily derived and formulae for good practical approximations 

are well known in literature. For example the dip in arc minutes is 

calculated as 1.78·√h, where h, the height of the observer, is expressed 

in meters. Such formulae are also derived in this article but what is 

new here is the formula for curvature of the horizon as seen from the 

perspective of an observer. If the observer sees a part of the horizon 

contained within the angle γ then the horizon arc in the middle of this 

field of view will be seen higher than the ends of the arc (i.e. above 

the chord) by the angle (again in arc minutes): 

g = 1.78·√h·[1/cos(γ/2) – 1]. 

This is just the dip scaled by the factor 1/cos(γ/2) – 1. This formula 

proves quite accurate and thus it can be safely used by all flat earthers. 

Assessment of its accuracy can be made by comparing the results it 

gives with the results obtained from exact solution as given in the 

Table 2 below. For example, this formula errs by less than 1% for h ≤ 

100 000 m and γ = 90°, or h ≤ 50 000 m and  γ = 120°, or h ≤ 10 000 

m and  γ = 150°. Actual observations presented in this web site are 

shown to agree with our theoretical calculations. 

Flat earth believers often cite the lack of evidence for the earth's sphericity, in 

particular the fact that the curvature of the horizon is not visible on a daily basis, 

even at considerable heights. I recently watched a video by someone from 

Poland who planned to send a balloon with equipment high enough to show that 

the curvature is not visible there either. Stratospheric balloons usually rise to an 

altitude of 20-40 km (the record being 43,561 m).  

The difficulty in seeing the curvature with the naked eye or in photographs is 

simply due to the smallness of the curvature. Nevertheless, the fact that the 

horizon is lowered has been repeatedly verified experimentally. A good example 

of ground measurements with a theodolite is presented in the video here.   

The formulas for calculating the distance to the horizon and its lowering or dip 

relative to the plane perpendicular to the vertical at the observer's location are 

quite simple – they can be easily found in the literature. However, calculating 

the expected amount of curvature of the horizon in photographs of a section of 

the horizon is somewhat challenging, which prompted me to develop the precise 

solutions presented here. They will allow for more reliable planning of possible 

attempts to experimentally confirm or disprove the sphericity of the Earth.  

https://mctoon.net/left-to-right-curve/
https://ebd.cda.pl/620x368/23856537c
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The distance and dip of the horizon 

The distance and dip of the horizon can be easily 

determined based on the figure on the left. If we 

assume that the Earth's surface is a sphere with 

radius R, the horizon will be a circle with radius 

r = R·sin α, where α is the horizon dip. This is 

also the radius of curvature of the horizon. The 

horizon dip is the angle between the plane 

perpendicular to the vertical direction at the 

observer's location and the direction of the 

horizon. We can calculate it from the 

relationship sin(π/2 – α) = cos α = R/(R + h), 

where π is a mathematical constant (3.14159...), 

which, when expressing an angle in radians, 

corresponds to a value of 180°. Thus:  

α = arccos  = arcsin{√[1 – ( 2]} 

We can calculate the distance to the horizon just as easily using Pythagoras' 

theorem d
2
 = (R + h)

2
 – R

2
 = 2h·R + h

2
, from which 

d = √(2h·R + h
2),  

or from the already calculated angle α 

d = R·tg α, 

where R, h and d are expressed in the same units, and α – in radians. 

These formulas are accurate and remain valid even for satellites, but since in 

practice h is much smaller than R, thus α is usually small, we can use the 

following approximations for this quantity: 

α ≈ sin α = d/(R + h) = (2hR + h
2
)

1/2
/(R + h) ≈ (2h/R)

1/2 
≡ √(2h/R). 

Assuming R = 6371000 m (the average radius of our planet) for the Earth and 

converting the units from radians to arc minutes (factor 180·60/π), we get 

α ≈ (180·60/π) ·√(2/R)·√h
 
= 1.926·√h, 

where h is expressed in meters and α in minutes. This approximation can be 

found in the literature, but with a factor of 1.8 in front of the square root, which 

significantly compensates for atmospheric refraction (see below).  

Table 1 shows the calculations of these two quantities for several heights h 

above the Earth's surface. It shows that the approximation of 1.926√h is very 

Earth center 
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good up to an altitude of 100 km, where the error is 100·(609.1 – 605.2)/605.2 = 

0.64%. Even at an altitude of 1000 km, the error is only about 6%. 

Table 1. Horizon dip, α, and distance, d, as a function of the 

observer's height above the Earth, h (r is the radius of the horizon), 

calculated with approximate formula and exactly. 

h  1.926·√h arccos[R/(R+h)]      d      r 
[m]       [′]    [′]      [m]     [m] 

       10 

      100 

     1000 

    10000 

    25000 

    50000 

   100000 

   500000 

  1000000 

 10000000 

100000000 

    6.1 

   19.3 

   60.9 

  192.6 

  304.5 

  430.7 

  609.1 

 1361.9 

 1926.0 

 6090.5 

19260.0 

    6.1  

   19.3  

   60.9  

  192.5  

  304.1  

  429.3  

  605.2  

 1319.6  

 1811.6  

 4025.9  

 5194.0 

     11288 

     35696 

    112884 

    357099 

    564955 

    799749 

   1133225 

   2573130 

   3707020 

  15080450 

106180035 

   11288 

   35695 

  112867 

  356539 

  562747 

  793522 

 1115713 

 2385884 

 3204100 

 5868765 

 6359562 
 

Horizon Curvature 

When we are positioned exactly at the center of a circle, we see each segment of 

the circle as its chord, i.e., as a straight line segment. However, when viewing 

such a segment of circle from any height, we see it as an arc above the chord. 

The bulge above the chord becomes more pronounced the higher we look from 

and the larger the angle of view. If we take photos of the horizon from a height h 

(see the figures below) and our camera or camcorder has a field of view (angle) 

γ, the ends of the part of the horizon visible in the resulting image (photo) will 

be as far from the device (camera) as any point on the entire horizon, i.e., by d, 

and the distance between them, i.e., the chord length, x, will be: 

x = 2d·cos(π/2 – γ/2) = 2(2h·R + h
2
)

1/2
 sin(γ/2).  
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The center of the chord connecting the mentioned ends will be at a distance from 

the observer d·cos(γ/2). The distance, r', of this center from the vertical line and 

the depression of the direction towards this center from the camera relative to 

the horizon plane, α', will be respectively: 

 r' = d·[cos
2
(α) – sin

2
(γ/2)]

1/2
 and 

α' = arccos[r'/(d·cos(γ/2)] = arcsin[sin(α)/cos(γ/2)]. 

The non-obvious right-hand expression for α' is easily obtained using the 

relationship arccos x = arcsin[√(1 – x
2
)]. 

On the horizon plane, the distance between the cord center and the top of 

horizon above it is 

y = r – r' = R·sin α – r' = d·cos α – r'.  

From the vantage point, the top of the horizon bulge will be visible above the 

chord at an angular distance g = α' – α. Thus we have an exact expression for 

this quantity: 

g = arcsin[sin(α)/cos(γ/2)] – α,  

but for small angles α (which in practice is true for angles γ less than 120°, even 

up to a height of h = 50,000 m), we can simplify it to 

g ≈ α/cos(γ/2) – α = α [1/cos(γ/2) – 1] 

to obtain a simple formula (giving the result in radians): 

g ≈ √(2h/R)·[1/cos(γ/2) – 1]. 

Expressing h in meters and scaling the whole thing as before for α, we obtain a 

novel formula (giving the result g in minutes of arc): 

g ≈ 1.926·√h·[1/cos(γ/2) – 1]. 

As a measure of the bulge of the horizon, we can use the percentage ratio of the 

angle g to the field of view or the angular distance between the edges of the 

horizon visible in the image, i.e., 100·g/γ.  
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The Effect of Refraction and Practical Formulas 

Refraction (change of direction of light at the boundary of atmospheric layers 

with different refractive indices, which depend primarily on air temperature and 

pressure) allows one to see slightly beyond the geometric horizon from altitudes 

greater than zero – the further beyond the higher is the altitude. At altitudes 

reaching the stratosphere, a correction for refraction of approximately 0.5° can 

be expected. In the atmosphere, a light ray follows an upward convex curve. 

This means that a ray tangent to the spherical Earth at a geometric distance d 

from the observer will arrive slightly below the observer (located at altitude h), 

which is equivalent to a reduction in angle α. In calculations of the horizon 

distance and dip, this can be taken into account by increasing the Earth's radius, 

R. One model compensates for refraction by increasing the Earth's radius by a 

factor of 7/6, leading to the approximations: 

α  ≈ 1.926·√(6/7) ·√h  = 1.78·√h 

d  ≈ √[2h·(7/6) ·R + h
2
] = √[(7/3)·h·R + h

2
] ≈ 3856·√h.  

If we express h in meters in these formulas, we get α in arc minutes, and d in 

meters. Expressing d in nautical miles (1 NM = 1852 m; 3856/1852 = 2.08), we 

obtain the formula used in navigation: d = 2.08•√h (e.g., Navipedia). However, 

these approximations fail at high altitudes, say above 100 km. Refraction can be 

similarly accounted for in the formula for the bulge g: 

g ≈ √[2h·(6/7)/R]·[1/cos(γ/2) – 1] = 1.78·√h·[1/cos(γ/2) – 1].  

Calculations of the angle g = α' – α using exact formulas for several heights h (in 

meters) and selected fields of view γ (in degrees) are provided in Table 2. The 

absence of a percentage value in this table indicates that the entire horizon is 

within the field of view; in this case, r' = 0, and the chord becomes the diameter 

of the horizon, x = 2r.  

https://www.navipedia.pl/navi02.html
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These calculations show that in practice, the horizon's curvature above the chord 

for fields of view up to 60° and an observation point altitude of up to 10 km is 

less than 1% of that 60° (i.e., 0.6°), making it difficult to see. Due to this small 

degree of horizon curvature, coupled with frequent image distortions resulting 

from imperfect camera optics (the "fisheye" effect), it is important that the 

horizon line (or rather, the chord) runs as precisely as possible through the 

center of the resulting image. 

Flat Earth advocates claim that the lack of horizon curvature can be verified by 

placing a straight board or beam horizontally at eye level on the seashore. 

Suppose such a board is 3 meters long and placed 10 meters above sea level, and 

we look at it so that we can see its ends on the horizon, encompassing a horizon 

angle of view of 60°. This means that our eyes are at a distance of 3 m from the 

ends of the board, and 3·cos(60°/2) = 2.60 m from its center. The angle of 

curvature of the horizon read from Table 2 is in this case g = 0.872' (approx. 

0.024% of 60°), or calculated using the given approximate formula  

1.78·√10·[1/cos(30°) – 1] = 0.870'. This further means that at a distance of the 

board, the horizon will protrude above it by 2.60·tg g = 0.0007 m, i.e. less than 1 

mm. Even if the board is perfectly level, such a small curvature is unlikely to be 

noticeable. A similar calculation for the field of view γ = 120° (the distance of 

Table 2.  Observed horizon bulge, g (expressed in arc minutes and percentage 

of the angle at which the chord is visible, γ), above the chord as a function of 

the observer's height above the Earth, h, for selected fields of view, γ. 

Calculations were performed using exact formulas, taking into account mean 

refraction. Missing numerical data indicate situations when for very high 

altitudes the observer field of view envelopes entire horizon.  

Height Field of View, γ 
h 30° 60° 90° 120° 150° 

[m]    ['] [%]      ['] [%]      ['] [%]      ['] [%]    ['] [%] 

     10       

100      

1000     

10000     

25000     

50000    

100000    

500000   

1000000   

5000000  

10000000 

0.199 

0.629 

1.989 

6.293 

9.956 

14.09 

19.97 

45.34 

65.32 

168.2 

282.1 

0.011 

0.035 

0.111 

0.350 

0.553 

0.783 

1.109 

2.519 

3.629 

9.344 

15.68 

  0.872 

  2.759 

  8.724 

  27.60 

  43.68 

  61.86 

  87.72 

 200.6 

 292.0 

 868.7 

1514.2 

0.024 

0.077 

0.242 

0.767 

1.213 

1.718 

2.437 

5.573 

8.111 

24.13 

 —    

   2.34 

   7.39 

  23.4 

  73.9 

 117.1 

 166.0 

 235.9 

 549.7 

 823.6 

2202.9 

1514.2 

0.043 

0.137 

0.433 

1.369 

2.168 

3.074 

4.368 

10.18 

15.31 

—      

—    

   5.64 

  17.8 

  56.4 

 178.7 

 283.5 

 403.1 

 576.4 

1432.9 

2560.0 

2202.9 

1514.2 

0.078 

0.248 

0.783 

2.482 

3.937 

5.598 

8.006 

19.90 

35.56 

—      

—    

  16.1 

  51.1 

 161.6 

 514. 8 

 824.1 

1191.2 

1771.0 

4172.9 

3708.8 

2202.9 

1514.2 

0.179 

0.567 

1.796 

5.720 

9.156 

13.24 

19.68 

—      

—      

—      

—    
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the eyes from the center of the board will then be 0.87 m) gives only about twice 

as high bulge above the board: 0.87·tg(5.64') = 0.0014 m, i.e. 1.4 mm. 

The page Left to right curve of the 

horizon features a photograph of 

the horizon, viewed through the 

slits of a special device, taken from 

a height of h = 184 m with a field 

of view of γ = 63.7° (EXIF data). 

The expected bulge is therefore 

1.78·√184·[1/cos(63.7/2) – 1] = 

4.3′, which is (4.3/60)/63.7·100 = 

0.11% of the field of view. In a fragment of the aforementioned photograph (see 

the accompanying image) vertically enlarged by a factor of 100, a bulge of 

approximately 410 px (pixels) can be seen (with an error of approximately 10%) 

over a chord length of approximately 4100 px, or 0.1% of the field of view. This 

is consistent with the expected value of 0.11%. 

And one more note for flat earthers. Sometimes objects far beyond the 

calculated horizon are observed but it doesn't mean that the Earth isn't a sphere, 

as the formulas given here take into account the average astronomical refraction, 

and the actual refraction depends on temperature and pressure. Furthermore, one 

has to remember that there are phenomena such as terrestrial refraction and 

mirages. 

K.M. Borkowski 

Toruń (Poland), 17 May 2024 

https://mctoon.net/left-to-right-curve/
https://mctoon.net/left-to-right-curve/
https://www.navipedia.pl/astroklas07.html

